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Introduction. Expository special relativity is, for many purposes, well served by
the pretense that we inhabit a spacetime of 1 + 1 dimensions, though in such a
world proper rotation is impossible, boosts are necessarily colinear, and certain
kinematic phenomena—Thomas precession, most notably—remain hidden from
view.

The Schrödinger equation came into the world wearing 3-dimensional dress,
intent upon serious physical business (physics of the hydrogen atom); the
“quantum theory of 1-dimensional systems” was a pedagogical afterthought.
Similarly serious were Dirac’s motivating objectives (theory of the electron,
relativistically corrected theory of hydrogen, clarification of spin concept), but
in the latter instance the 3-dimensionality of space has seemed so central to the
architecture of the theory that no tradition of “pedagogical pull-back to lower
dimension” has come into being. I am motivated to inquire into the question
of whether or not such a “toy Dirac theory” has things to teach us. We will
find that it has, in fact, many valuable lessons to impart, and that it speaks of
deep things with engaging simplicity.

Suppose, therefore, that we are relativistically informed one-dimensional
physicists who, in reference to our inertial frame (and in the absence of gravity),
write

ggg ≡ ‖gµν‖ ≡
(

1 0
0 −1

)
(1)

to describe the Lorentzian metric structure of spacetime. It has been our habit
to erect our theory of the wave equation ψ = 0 on a “factorization trick”

≡ gµν∂µ∂ν = ∂2
0 − ∂2

1 = (∂0 − ∂1)(∂0 + ∂1)

and we have noticed, by the way, that the trick fails when we attempt to apply
it to the Klein-Gordon equation ( + κ 2)ψ = 0.

Proceeding in imitation of Dirac, we observe that the wave operator can
be written as a square

= (γγγ µ∂µ)(γγγ ν∂ν) (2)

provided γγγ µγγγ ν + γγγ νγγγ µ = 2gµν I, of which

γγγ 0γγγ 0 = I, γγγ 0γγγ1+ γγγ1γγγ 0 = 0, γγγ1γγγ1 = − I (3)
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supply a more explicit account. The Klein-Gordon operator can then be
rendered

+ κ 2 = (γγγ µ∂µ − iκ)(γγγ µ∂µ + iκ) (4)

and we are led to the Dirac equation

(γγγ µ∂µ + iκ)ψ = 0 (5)

The objects γγγ µ cannot, by (3), be real/complex numbers. A pair of 2×2
matrices that do the trick are

γγγ 0 ≡
(

0 1
1 0

)
, γγγ1 ≡

(
0 −1
1 0

)
(6)

Notice that while γγγ 0 is hermitian, γγγ1 is antihermitian. The hermitian matrix

GGG =
(

0 1
1 0

)
which, as it happens, is just γγγ 0 (7)

is, however, available as a “hermitianizer” in the sense1 that it renders GGGγγγ 0

and GGGγγγ1 simultaneously hermitian.

Looking back now to (5) we see that ψ has become a 2-component wave
function, and that were we wrote iκ we might more properly have written iκ I.
The “toy Dirac equation” (5) is a coupled pair of equations, which can be spelled
out (

iκ ∂0 − ∂1

∂0 + ∂1 iκ

) (
ψ1

ψ2

)
=

(
0
0

)
(8)

Multiplication by the conjugated operator yields two copies of the Klein-Gordon
equation:(

−iκ ∂0 − ∂1

∂0 + ∂1 −iκ

) (
iκ ∂0 − ∂1

∂0 + ∂1 iκ

)
=

(
+κ 2 0
0 +κ 2

)

Lagrangian formulation. It is (see cft, Chapter 2, p. 24) the existence of a
hermitianizer that provides access to the methods of Lagrangian field theory.
We introduce

L = −�c
[
i 12

{
ψ̃µγγγ

µψ − ψ̃ γγγ µψµ

}
+ κ ψ̃ψ

]
(9.0)

= �c

[
ψ̃µγγγ

µψ − ψ̃ γγγ µψµ

2i
− κ ψ̃ψ

]

with ψ̃ ≡ ψ†GGG and ψµ ≡ ∂µψ; the �c-factor has been introduced in order to
ensure that [L] = energy/length, and in the presumption that [ψ̃ψ] = 1/length,

1 Compare (2–55) in classical field theory (). I will henceforth
write cft when referring to that source.
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while the minus sign is physically inconsequential/cosmetic. Gauge-equivalent
to L are

L1 ≡ L + 1
2 i�c∂µ(ψ̃γγγ µψ) = +�c

[
ψ̃(iγγγ µψµ − κψ)

]
(9.1)

L2 ≡ L − 1
2 i�c∂µ(ψ̃γγγ µψ) = −�c

[
(ψ̃µγγγ

µi+ ψ̃κ )ψ
]

(9.2)

which permit one to write
L = 1

2 (L1 + L2)

The ψ̃th Lagrange derivative operator looks most simply to (9.1), and yields
the Dirac equation (5) as a field equation. The ψth Lagrange derivative of (9.2)
yields as the other field equation ψ̃µγγγ

µi+ψ̃κ = 0, which is seen by the following
little argument

(ψ̃µγγγ
µi+ ψ̃κ ) = i(ψ̃µγγγ

µ − iψ̃κ )

= i(γγγ µψµ + iκ ψ)†GGG

to be in effect the conjugate transpose of (5).

From the simple design of (9.1) it follows that if ψ is a solution of the Dirac
equation (5) then L1 = 0, and by quick extension of that argument we learn
that

L, L1 and L2 vanish numerically if ψ satisfies the Dirac equation (10)

From the manifest reality of L it follows by Noether’s theorem2 that

∂µQ
µ = 0 where Qµ ≡ cψ̃γγγ µψ (11)

where the factor c has been introduced so as to achieve [Qµ] = 1/time (which in
2-dimensional spacetime is the dimension of “number flux”). Direct verification
of (11) is easily accomplished:

∂µQ
µ = cψ̃µγγγ

µψ + cψ̃γγγ µψµ

= c(ψ̃iκ)ψ + cψ̃(−iκ ψ) by the field equations
= 0

Recalling the definitions (6) and (7), we have these explicit formulae:

Q0 = ψ∗0ψ0 + ψ∗1ψ1

Q1 = ψ∗0ψ0 − ψ∗1ψ1

}
(12)

Noether has supplied this generic description of the stress-energy tensor:3

Sµ
ν = ψ̃ν

∂L

∂ψ̃µ

+ ∂L

∂ψµ

ψν−Lδµ
ν

↑
—drop, in consequence of (10)

2 See cft (3–69).
3 See cft (1–34).
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Working from (9.0), we obtain

Sµ
ν = �c

[
ψ̃νγγγ

µψ − ψ̃ γγγ µψν

2i

]
(13)

in connection with which we observe that

∂µS
µ

ν ∼ ψ̃µνγγγ
µψ + ψ̃νγγγ

µψµ − ψ̃µγγγ
µψν − ψ̃ γγγ µψµν

= (ψ̃iκ)νψ + ψ̃ν(−iκ ψ) − (ψ̃iκ)ψν − ψ̃(−iκ ψ)ν by field equations
= 0

Notice that Sµν is not symmetric: in this respect also toy Dirac theory is found
to mimic precisely its 4-dimensional prototype.4 Had we worked from (9.1) or
(9.2) we would have been led to distinct but similar results.

Lorentz covariance. In 2-dimensional spacetime we write

Λ : x −→ X = ΛΛΛx with ΛΛΛTgggΛΛΛ = ggg (14)

to describe a Lorentz transformation. Necessarily detΛΛΛ = ±1. Infinitesimal
Lorentz transformations are necessarily proper, and can be described

ΛΛΛ = I + ααα+ · · · with αααTggg + ggg ααα = 0 ⇒ ααα = δω

(
0 1
1 0

)
(15)

By iteration we obtain

ΛΛΛ = exp
{
ω

(
0 1
1 0

) }
=

(
coshω sinhω
sinhω coshω

)
(16)

where β = tanhω serves (via coshω = 1/
√

1 − β2 ≡ γ and sinhω = β/γ)
to establish explicit contact with kinematic aspects of the theory of Lorentz
transformations. We observe that in 2-dimensional spacetime all (proper)
Lorentz transformations have the irrotational character of “boosts.”

The components of multicomponent fields are assumed to fold among
themselves in linear representation of the Lorentz group O(1, 1):5

Λ : ψ −→ Ψ = UUU(Λ)ψ (17.1)

First partials of such a field therefore transform

Λ : ψµ −→ Ψµ = UUU(Λ)Λµ
νψµ (17.2)

4 Compare cft (2–99).
5 For omitted details see cft, Chapter 2, pp. 32 et seq .
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The Lorentz invariance of the Dirac Lagrangian (9.0) can be shown to
entail (compare cft (2–70))

UUU –1 = GGG –1UUU†GGG (18.1)
UUU –1γγγ µUUU = Λµ

νγγγ
ν (18.2)

The first of those conditions asserts the “GGG -unitarity” of the 2× 2 matrix UUU ,
and would reduce to ordinary unitarity if it were the case that GGG = I. Write

UUU = I + βββ + · · ·

Then (18.1) entails the “GGG -antihermiticity” of βββ (i.e., that GGGβββ + (GGGβββ)† = 0)
while (18.2) gives

γγγ µβββ − βββ γγγ µ = αµνγγγ ν (19)

Stealing now from I know not whom, I claim that βββ can therefore be described

βββ = 1
8α

ρσ(γγγργγγσ − γγγσγγγρ) (20)

and do so on the basis of the following argument: write γγγ µ(γγγργγγσ − γγγσγγγρ) and
use γγγ µγγγ ν + γγγ νγγγ µ = 2gµν I , in the form γγγ µγγγρ = 2δµ

ρI − γγγργγγ
µ , to pull the γγγ µ

factors through to the right; one obtains

γγγ µ(γγγργγγσ − γγγσγγγρ) = 2(δµ
ργγγσ − δµ

σγγγρ) − γγγργγγ
µγγγσ + γγγσγγγ

µγγγρ

= 2(δµ
ργγγσ − δµ

σγγγρ) − 2(γγγρδ
µ

σ − γγγσδ
µ

ρ)
+ γγγργγγσγγγ

µ − γγγσγγγργγγ
µ

giving

αρσ
[
γγγ µ(γγγργγγσ − γγγσγγγρ) − (γγγργγγσ − γγγσγγγρ)γγγ

µ
]

= αρσ
[
4(δµ

ργγγσ − δµ
σγγγρ)

]
= 4(αµν − ανµ) γγγν

= 8αµνγγγν

which completes the demonstration. Looking back again to the definitions (1),
(6) and (15) of ggg, γγγ 0, γγγ 1 and ‖αµ

ν‖ we obtain

γγγ0 = g0β γγγ
β =

(
0 1
1 0

)
, γγγ1 = g1β γγγ

β =
(

0 1
−1 0

)

and

‖αµν‖ = ‖αµ
β‖‖gβν‖ =

(
0 −ω
ω 0

)
which when brought to (20) give

βββ = 1
2

(
ω 0
0 −ω

)
(21)
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Calculation confirms that the βββ thus described does in fact satisfy (19). By
trivial iteration we have

UUU = exp
{

1
2

(
ω 0
0 −ω

) }
=

(
e+

1
2 ω 0
0 e−

1
2 ω

)
(22)

Calculation gives

UUU –1γγγ 0UUU =
(

0 e−ω

e+ω 0

)
= coshω

(
0 1
1 0

)
+ sinhω

(
0 −1
1 0

)

UUU –1γγγ 1UUU =
(

0 −e−ω

e+ω 0

)
= sinhω

(
0 1
1 0

)
+ coshω

(
0 −1
1 0

)

in exact agreement with (18.2).

Let us look now more closely to the implications of (18.1). Necessarily

detUUU = eiφ (23.1)

so GGG -unitary matrices can (in the 2-dimensional case) be displayed

UUU = e
1
2 iφ · SSS (23.2)

where SSS is a unimodular GGG -unitary matrix:

SSS –1 = GGG –1SSS†GGG with detSSS = 1 (23.3)

The most general such 2×2 matrix is found to have the form

SSS =
(

a ib
ic d

)
with a, b, c, d real and ad+ bc = 1 (23.4)

If we write SSS = eiHHH then SSS will be unimodular if and only if trHHH = 0, and
GGG -unitary if and only if HHH is GGG -hermitian

HHH = GGG –1HHH †GGG (23.5)

which requires that GGGHHH be hermitian in the standard sense; i.e., that

HHH = GGG –1 ·
(

p r + is
r − is q

)
=

(
r − is q
p r + is

)
(24.6)

which will be traceless if and only if r = 0. Looking in the light of these formal
developments back to (22), we see that the UUU encountered there is unimodular—
an instance of (23.4) with b = c = 0 and d = a–1.

We have arrived at the association

ΛΛΛ(ω) =
(

coshω sinhω
sinhω coshω

)
⇐⇒ UUU(ω) =

(
e+

1
2 ω 0
0 e−

1
2 ω

)
(25)
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from which it is already clear that if Lorentz covariance of the toy Dirac theory
is to be achieved then the 2-component wave function ψ cannot transform as a
2-vector, but must transform by the distinctive rule(

ψ1

ψ2

)
−→

(
Ψ1

Ψ2

)
=UUU(ω)

(
ψ1

ψ2

)

UUU(ω) =
(

cosh 1
2ω + sinh 1

2ω 0
0 cosh 1

2ω − sinh 1
2ω

)

=




√
1+β
1−β 0

0
√

1−β
1+β




Notice that UUU has turned out to be unimodular, though we nowhere had reason
to insist that it be so.

The intrusion of (what we might informally call) half-angles speaks to us
of the familiar double-valuedness of the spinor representations of O(3). . . and
indeed: it follows transparently from (18) that if UUU satifies that pair of
conditions, then so also does its negative. So in place of (25) we might more
properly write

ΛΛΛ(ω) ⇐⇒ ±UUU(ω) (26)

In the present context, however, the two branches of the spinor representation
of the Lorentz group O(1, 1) are—uncharacteristically—disjoint. They can be
connected, but at cost of a complexification of the “rapidity” parameter :

ΛΛΛ(ω + 2πi) = ΛΛΛ(ω) but UUU(ω + 2πi) = −UUU(ω) (27)

We noticed that only a 1-parameter subgroup of the full 3-parameter group
SU(2;GGG) of unimodular GGG -unitary matrices is pressed into service to represent
the action of Lorentzian boosts, and inquire now into the question of whether or
not that subgroup is in any way “distinguished.” For an arbitrary 2×2 matrix
MMM one has det(MMM − λIII ) = λ2 − λ · trMMM + detMMM , so if MMM is traceless then the
Cayley-Hamilton theorem supplies MMM2 + (detMMM )III = 000, whence

eMMM = cos θ · III + sin θ ·MMM/θ with θ ≡
√

detMMM

In application of these general remarks we have

SSS = eiHHH = cos θ ·
(

1 0
0 1

)
+ sin θ · 1

θ

(
s iq
ip −s

)
with θ ≡

√
pq − s2

which reproduces the design of (23.4). Boosts have been found to be associated
with the case p = q = 0, where we have

= cos is ·
(

1 0
0 1

)
+ sin is · 1

is

(
s 0
0 −s

)

= cosh s ·
(

1 0
0 1

)
+ sinh s ·

(
1 0
0 −1

)
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We recover (25) when, as stipulated at (21), we set s = 1
2ω. Let us now, at

(24.6), set p = u+ v and q = u− v so as to obtain

HHHtraceless =
(

−is u− v
u+ v +is

)
≡ sτττ0 + uτττ1 + vτττ2

Then
det(sτττ0 + uτττ1 + vτττ2) = s2 − u2 + v2

Each τττ -matrix is traceless; their determinants are given by

det τττ0 = +1; det τττ1 = −1; det τττ3 = +1

and their multiplicative properties present a kind of twisted version of the Pauli
algebra:

τττ2
0 = −1; τττ2

1 = +1; τττ2
2 = −1

τττ0τττ1 = −τττ1τττ0 = +iτττ2

τττ1τττ2 = −τττ2τττ1 = +iτττ0

τττ2τττ0 = −τττ0τττ2 = −iτττ1

If there is a “distinguished” element it would appear to be not τττ0 but τττ1. I had
hoped to be able to assign meaning to the “spin” of the ψ-field, even though the
toy theory does not support a concept of (orbital) angular momentum. . .but
appear to be simply going in circles, so abandon this aspect of my topic. In the
absence of a theory of spin it appears to be impossible to use Belinfante’s trick
(cft, Chapter 2, p. 43) to achieve symmetrization of the stress-energy tensor.

Clifford algebras—especially the algebras of order 2. It appears to have been
William Clifford who first undertook to take the “square root of a quadratic
form,” writing

p2
1 + p2

2 + · · · + p2
n = (εεε1p1 + εεε2p2 + · · · + εεεnpn)2 (28)

and imposing upon the “hypernumbers” εεεi the requirements that

(εεεi)2 = 1 : i = 1, 2, . . . , n

εεεiεεε j = −εεε jεεεi : i = j

}
(29)

though precisely why he did so—and where/when—remains unclear: persual
of his Collected Papers6 reveals an abiding interest in the geometric algebras
of Hamilton and Grassmann, but it appears that what we now call “Clifford
algebra” can be detected in Clifford’s own work only as fragmentary hints (see
the editor’s remark at p. lxvii in the volume just cited), written near the end of
his brief life (–). Pertti Lounestoe informs us7 that Clifford’s idea was

6 The edition of  was reprinted by Chelsea in .
7 Clifford Algebras and Spinors (), p. 9.
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first mentioned in a talk (), the text of which was published posthumously
as “XLIII. On the classification of geometrical algebras” in Collected Papers.
Clifford’s inspired murmuring attracted very little attention, however, until—
fifty years later, and stripped of its geometrical overlay—the algebraic essence
of the idea occurred independently to Dirac, and was put by him to stunningly
productive work. The literature, some of it of intimidating complexity, has
by become vast, and the theory of Clifford algebras (like quaternion algebra
before it) has displayed a curious power to make fanatics of otherwise staid
and sensible applied mathematicians and physicists. We will be concerned only
with the simplest elements of the subject.8

Higher powers of the expression which appears squared on the right side
of (28) are typified by the following:

(εεε1p1 + εεε2p2 + · · · + εεεnpn)7

= linear combination of terms of the type εεεi1εεεi2εεεi3εεεi4εεεi5εεεi6εεεi7

Look to a typical such term: drawing upon (28) we have (on the presumption
that n ≥ 9)

εεε5εεε2εεε1εεε1εεε7εεε2εεε1 = −εεε1εεε1εεε1εεε2εεε2εεε5εεε7
↑
—odd number of permutations required to achieve ascending order

= −εεε1εεε5εεε7 because
{

(εεεi)even = I
(εεεi)odd = εεεi

Evidently every εεε-product encountered in such an expression can, by (28), be
brought to the form of one or another of the products which appear in the
following list:

( I else εεε1) · ( I else εεε2) · · · ( I else εεεn)

The list asks us to make n binary choices, and therefore presents a total of 2n

distinct “canonical products.” We are led thus to contemplate expressions of
the design

AAA = aI +
∑

i

ai εεε
i +

∑
i<j

aij εεε
i εεεj + · · · +

∑
i1<i2<···<ip

ai1i2···ip εεε
i1 εεεi2 · · · εεεip (30)

+ a12···n εεε
1 εεε2 · · · εεεn

where the coefficients are taken to be (let us say) real numbers, and where there
are evidently

(
n
p

)
terms of order p. The set of all such “Clifford numbers” AAA is

closed under both addition and multiplication, and is called the Clifford algebra
C2n, of which

{
εεε1, εεε2, . . . , εεεn

}
are the “generators.”

8 For good accounts see (for example) §§3–5 in P. K. Raševskĭı, “The theory
of spinors,” Amarican Mathematical Society Translations, Series 2, Volume 6
(1957) or the recent text by P. Lounestoe (cited above).
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To place C2n in its larger context: an associative linear algebra A is a vector
space—let the elements be notated

AAA = a1eee1 + a2eee2 + · · · + ameeem ≡ aieeei

—on which a law of multiplication is defined

AAABBB = aib j eeeieeej

eeeieeej ≡
∑

p ci
p
j eeep (31.1)

and is required, moreover, to be associative:

AAA(BBBCCC) = (AAABBB)CCC ⇐⇒ ci
q
p cj

p
k = ci

p
j cp

q
k

Commutivity (cipj = cj
p
i ) is, however, typically not required. If we define

E i ≡ ‖ciqp‖ then the associativity condition can be expressed

E i E j =
∑

pci
p
j Ep (31.2)

which shows that every associative algebra of order m admits of m×m matrix
representation (this is the non-trivial converse of the trivial statement that every
matrix algebra is associative), but leaves open the question of whether A admits
of lower-dimensional matrix representation. Notice that (31.1) is—insofar as
it involves weighted summation—more general than would be permitted by
stipulation that the eeei are elements of a finite group, though every such group
provides a specialized instance of (31.1).

It is by now apparent that C2n is a specialized associative linear algebra of
order m = 2n, and admits of 2n × 2n matrix representation. It is, however, not
presently clear how to construct the least-dimensional representation of C2n.
Or how to construct AAA –1, or even how to decide (directly, without recourse to
matrix representation theory) whether AAA –1 exists. These are typical of issues
taken up in the literature.

Relativity—and a host of other pure/applied topics as well—inspire interest
also in indefinite quadratic forms

p2
1 + p2

2 + · · · + p2
n − q2

1 − q2
2 − · · · − q2

m

The associated Clifford algebras—which arise from writing

(εεε1p1 + · · · + εεεnpn + εεεn+1q1 + · · · + εεεn+mqm)2

and requiring that

(εεεi)2 =
{

+ I if i = 1, 2, . . . , n
− I if i = n+ 1, n+ 2, . . . ,m

εεεi εεε j = −εεε j εεεi if i = j


 (32)
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—are denoted C2n,m . The algebra previously designated C2n would in this
refined notation be designated C2n,0 .

Evidently C20,1 is just C, the algebra of complex numbers, which we are
in position now to observe admits of real 2×2 matrix representation. Look to
the details: (32) reduces to the statement

εεε2 = − I

Write I → eee1 and εεε → eee2 to establish contact with the generic language of
(31.1). Then I·I = I , I·εεε = εεε, εεε·I = εεε, εεε·εεε = − I read

eee1eee1 = c1
1
1eee1 + c1

2
1eee2 = 1eee1 + 0eee2

eee1eee2 = c1
1
2eee1 + c1

2
2eee2 = 0eee1 + 1eee2

eee2eee1 = c2
1
1eee1 + c2

2
1eee2 = 0eee1 + 1eee2

eee2eee2 = c2
1
2eee1 + c2

2
2eee2 = −1eee1 + 0eee2

giving

E1 =
(

1 0
0 1

)
→ I and E2 =

(
0 −1
1 0

)
→ J

The elements zzz = xI + yεεε of C20,1 acquire therefore the matrix representations

Z =
(
x −y
y x

)

Evidently det Z = x2 + y2 and Z–1 → (x2 + y2)–1(xI − yεεε) = (zzz∗zzz)–1zzz∗ with
zzz∗ = xI − yεεε. I will, for methodological reasons, conclude with indication
of how zzz –1 might have been obtained “directly, without recourse to matrix
representation theory.” Assume without significant loss of generality that x = 1
and write

(I + yεεε)–1 = I − yεεε+ (yεεε)2 − (yεεε)3 + (yεεε)4 − (yεεε)5 + · · ·
= (1 − y2 + y4 − · · ·)I − (y − y3 + y5 − · · ·)εεε
= (1 + y2)–1(I − yεεε)

The argument fails only if x = 0, but in that case one has

(yεεε)–1 = (y2)–1(−yεεε)

by inspection.

The algebra C20,2 is familiar as the algebra Q of real quaternions, as I now
demonstrate. The general element can be written

qqq = w I + xεεε1 + yεεε2 + zεεε1εεε2

= w I + xiii+ yjjj + zkkk in Hamilton’s notation
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and the conditions (32) become

iii2 = jjj 2 = kkk 2 = −I (33.1)

iiijjj = kkk = −jjj iii
jjjkkk = iii = −kkkjjj (33.2)
kkkiii = jjj = −iiikkk

of which

(a1 iii+ a2 jjj + a3kkk)(b1 iii+ b2 jjj + b3kkk) = −(a1b1 + a2b2 + a3b3) I

+ (a2b3 − a3b2)iii

+ (a3b1 − a1b3)jjj

+ (a1b2 − a2b1)kkk

is a celebrated particular consequence. We are assured that C20,2 admits of
real 4×4 matrix representation, but I skip the detailed demonstration in order
to confront the force of the question: How, in the absence of an explicit matrix
representation, does one construct qqq –1? Look to the series expansion of

[ I + (xiii+ yjjj + zkkk)]–1

and, using (xiii+ yjjj + zkkk)2 = −(x2 + y2 + z2) I (established just above), obtain

[ I + (xiii+ yjjj + zkkk)]–1 = (1 + x2 + y2 + z2)–1[ I − (xiii+ yjjj + zkkk)]

Quick tinkering (send x → x/w, y → y/w, z → z/w and simplify) leads from
here to the conclusion (valid even when w = 0) that qqq –1 exists if and only if
qqq∗qqq = w2 + x2 + y2 + z2 = 0 (i.e., for all qqq = 000) and is given then by

qqq –1 = (qqq∗qqq)–1qqq∗ with qqq∗ ≡ w I − xiii− yjjj − zkkk

A moment’s further tinkering leads—not at all to our surprise—to this complex
2×2 representation of the quaterion algebra:

qqq → Q =
(
w + z −x− iy
x− iy w − z

)
≡ wU + xI + yJ + zK

We have
det Q = w2 + x2 + y2 + z2

and observe that the matrices I , J and K are traceless antihermitian. We
recover the previously described representation of C20,1 when y = z = 0.

C21,3 is just the Dirac algebra—an algebra of order 16, generated by Dirac’s
celebrated γγγ µ-matrices. It possesses a real 16×16 representation, but is well
known to admit also of complex 4×4 representation.
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Which brings us to C21,1 —the “toy Dirac algebra” implicit in (1), of which
we have been acquainted with the generators since (6) but have not previously
had reason to regard as a closed algebra, with general element given by

ddd = s I + v1γγγ
1 + v2γγγ

2 + pΓΓΓ

ΓΓΓ ≡ γγγ 1γγγ 2
(34)

C21,1 is evidently a variant of the quaternion algebra; in place of (33) we have

(γγγ 1)2 = + I , (γγγ 2)2 = − I , (ΓΓΓ )2 = + I (35.1)

γγγ 1γγγ 2 = ΓΓΓ

γγγ 1ΓΓΓ = γγγ 2

γγγ 2ΓΓΓ = γγγ 1

(35.2)

A real 4× 4 representation is assured, but a real (!) 2× 2 representation is
implicit in (6)

ddd → D =
(

s+ p v1 − v2

v1 + v2 s− p

)
≡ sI + v1 IΓ

1 + v2 IΓ
2 + pIΓ (36)

and is much easier to work with. Define

D∗ = sI − v1 IΓ
1 − v2 IΓ

2 − pIΓ

and obtain
D∗D = [s2 − (v2

1 − v2
2) − p2 ]︸ ︷︷ ︸ · I

det D

giving ddd –1 = (ddd∗ddd)–1ddd∗; this result is structurally quite familiar, but novel in
respect to its detailed meaning.

The notations s/v/p are intended to suggest scalar/vector/pseudoscalar ,
for reasons which I now discuss. Let

www = a1γγγ
1 + a2γγγ

2 + bΓΓΓ with a2
1 − a2

2 + b2 = 1

Then www2 = I and
uuu ≡ eφwww = coshφ · I + sinhφ ·www

We look to the similarity transformation ddd → DDD = uuu –1ddduuu; i.e., to

DDD = (coshφ · I − sinhφ ·www)(s I + v1γγγ
1 + v2γγγ

2 + pΓΓΓ )(coshφ · I + sinhφ ·www)

which for infinitesimal φ becomes

ddd → DDD = ddd+ δφ · [ddd ,www ] + · · ·
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with

δφ · [ddd ,www ] = 2δφ(bv2 − a2p)γγγ 1 + 2δφ(bv1 − a1p)γγγ 2 + 2δφ(a2v1 − a1v2)ΓΓΓ

= δv1γγγ
1 + δv2γγγ

2 + δpΓΓΓ

To exclude p -dependence from δv we find ourselves obliged to set a1 = a2 = 0.
Then b = ±1; without loss of generality we set b = 1, and obtain

DDD = e−φΓΓΓddd eφΓΓΓ

eφΓΓΓ = coshφ · I + sinhφ · ΓΓΓ
= s I + (v1 cosh 2φ+ v2 sinhφ)γγγ 1 + (v1 sinh 2φ+ v2 coshφ)γγγ 2 + pΓΓΓ

= S I + V1γγγ
1 + V2γγγ

2 + P ΓΓΓ

We have here recovered the 2-dimensional Lorentz transformations as natural
objects (and have at the same time indicated why it makes sense to use the
term “vector” in reference to the v terms), but have left unexplained why p has
been called a “pseudoscalar.” Suppose, however, we were to set

uuu = γγγ 1 →
(

0 1
1 0

)
: in this case uuu –1 = uuu

The unimodular (or ddd∗ddd -preserving) transformation ddd → DDD = uuu –1ddduuu is then
improper (disjoint from the identity), and we compute

DDD = s I + v1γγγ
1 − v2γγγ

2 − pΓΓΓ

The Lorentz transformation (v1, v2) → (v1,−v2) is improper in the familiar
sense, and has sent p → −p.

Clifford algebra when the metric is non-diagonal. Familiar transformations serve
to achieve

g11 g12 . . . g1N

g21 g22 . . . g2N

...
...

. . .
...

gN1 gN2 . . . gNN


 →



g1

g2
. . .

gN


 →




±1
±1

. . .
±1




where the final matrix has n plus signs on the diagonal, and m = N − n
minus signs. The theory of C2n,m standardly assumes such preparations to
have been carried out. I have (general relativistic) interest, however, in seeing
how one might contrive to work with a non-specialized real symmetric metric.
The algebra which arises from writing gijpipj = (εεεipi)2 or, as I find now more
convenient,

gijx
ix j = (xi εεεi)2 (37)

will be designated C2N(g) , and springs from anticommutation relations

εεεiεεεj + εεεjεεεi = 2gij (38)
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of which (29) no longer provide an accurate description. The only surviving
allusion to the possibility that the metric might be “indefinite” will reside in
the observation that

g ≡ det ‖gij‖ = (−)m|g | (39)

The important role formerly played by the antisymmetry condition (29) will be
taken over by the statement that, in consequence of (38),

εεεij ≡ 1
2 (εεεiεεεj − εεεjεεεi ) = εεεiεεεj − gij I is antisymmetric (40)

In  I had reason to work out the detailed theory of C24(g) . Here, taking
that work9 as my model, I will look only to the simplest case: C22(g) .

The general element of C22(g) can be written

GGG = S I + V iεεεi + 1
2T

ijεεεij (41)

where T ij can without loss of generality be assumed to be antisymmetric; since
2-dimensional, it supplies only a single adjustable parameter, so the final term
on the right could equally well be expressed T 12εεε12 or—more simply—P εεε. So
we write

GGG = S I + V iεεεi + P εεε (42)

If
HHH = s I + vi εεεi + pεεε

describes an arbitrary second element in C22(g) then a little work supplies the
product formula

GGGHHH = (Ss+ V ivi − gPp) I + (Svj + sV j − Pviε
ij + pViε

ij)εεεj (43)
+ (Sp+ V 1v2 − V 2v1 + Ps)εεε

where it is actually the expressions on the right sides of

V ivi = V 1g11v
1 + V 1g12v

2 + V 2g21v
1 + V 2g22v

2

g = g11g22 − g12g21

Vi = gi1V
1 + gi2V

2

vi = gi1 v
1 + gi2 v

2

which are presented to us in the course of the calculation, and where

εij ≡ sgn
(

i j
12

)
I strongly urge my reader to do the calculation that gives (43); it takes only a
few minutes of careful work on a large sheet of paper, and is highly instructive.

9 See “Aspects of Clifford algebras” (text of a seminar presented on  March
 to the Reed College Math Club—back in the days before there were such
things Thursday Math Seminars) in collected seminars (–).
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If we define
GGG∗ = S I − V iεεεi − P εεε (44)

then it is an immediate implication of (43) that

GGG∗GGG = (S2 − gijV
iV j + gP 2) I

Evidently GGG is invertible if and only if its “modulus”

|GGG | ≡ S2 − gijV
iV j + gP 2 = 0 (45)

In a matrix representation GGG → G the role of the modulus would be taken over
by det G. We find it natural, therefore, to construct the

“characteristic polynomial” |GGG − λ I | = λ2 − 2Sλ+ |GGG |

and are not surprised to discover thatGGG satisfies its own characteristic equation:

GGG2 − 2SGGG+ |GGG | = 000 (46)

We are assured that C22(g) —since an associative algebra of order 4—admits
of real 4× 4 representation, but the preceding results suggest strongly that it
admits actually of 2×2 representation.

The Clifford algebras C22,0 , C21,1 and C20,2 can be recovered as special cases
of C22(g) . To see how this works we look to the latter; i.e., to the quaternionic
case

‖gij‖ =
(
−1 0
0 −1

)
After notational adjustments

S → a0

V 1 → a1

V 2 → a2

P → a3

s → b0

v1 → b1

v2 → b2

p → b3

εεε1 → iii

εεε2 → jjj

εεε → kkk

the general product formula (43) becomes

(a0 I + a1iii+ a2jjj + a3kkk)(b0 I + b1iii+ b2jjj + b3kkk)

= (a0b0 − a1b1 − a2b2 − a3b3) I + (a0b1 + a1b0 + a2b3 − a3b2)iii

+ (a0b2 + a2b0 + a3b1 − a1b3)jjj

+ (a0b3 + a3b0 + a1b2 − a2b1)kkk

which is familiar as the quaternionic product formula—historic birthplace of the
“dot product,” the “cross product” (set a0 = b0 = 0) and of non-commutative
algebra generally.
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A notational adjustment

I → eee0 ; εεε1 → eee1 ; εεε2 → eee2 ; εεε → eee3

places us in position to use (31) to construct a real 4×4 representation of C22(g) .
Working from (43) we have

eee0(seee0 + v1eee1 + v2eee2 + peee3) = seee0 + v1eee1 + v2eee2 + peee3

eee1(seee0 + v1eee1 + v2eee2 + peee3) = g1kv
k eee0 + (s− pg12)eee1 + pg11eee2 + v2eee3

eee2(seee0 + v1eee1 + v2eee2 + peee3) = g2kv
k eee0 − pg22eee1 + (s+ pg21)eee2 − v1eee3

eee3(seee0 + v1eee1 + v2eee2 + peee3) = −gpeee0 + vigi2eee1 − vigi1eee2 + seee3

giving

I = eee0 → I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (47.0)

εεε1 = eee1 → E1 =




0 g11 g12 0
1 0 0 −g12
0 0 0 g11
0 0 1 0


 (47.1)

εεε2 = eee2 → E2 =




0 g21 g22 0
0 0 0 −g22
1 0 0 g21
0 −1 0 0


 (47.2)

εεε = eee3 → E =




0 0 0 −g
0 g12 g22 0
0 −g11 −g21 0
1 0 0 0


 (47.3)

Implausible though the design of these matrices may appear, Mathematica
quickly confirms that

Ei Ej + Ej Ei = 2gij I and E1 E2 − g12 I = E (48)

The representation of GGG = S I + V iεεεi + P εεε becomes

G = S I + V 1 E1 + V 2 E2 + P E

=




S V1 V2 −Pg
V 1 S+Pg12 Pg22 − V2

V 2 −Pg11 S−Pg21 V1

P −V 2 V 1 S


 (49)

and, appealing again to Mathematica for assistance, we find

det G = (S2 − V iVi + gP 2 )2 = |GGG |2 (50)
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If, in (49), we set S = P = 0 we arrive back at our point of departure

(V 1 E1 + V 2 E2)2 =




0 V1 V2 0
V 1 0 0 −V2

V 2 0 0 V1

0 −V 2 V 1 0




2

= (V1V
1 + V2V

2)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




. . .which is comforting, if not surprising.

It should be borne in mind that the representation (47/49) is not unique:
similarity transformations

Eµ → Eµ ≡ T –1 EµT (51)

yield alternative/equivalent representations.

A “real 4-component formulation of a toy Dirac theory with arbitrary
metric” is our present objective, but before we can make further progress we
must gain a sharper sense of certain general features shared by all
“real-field Dirac theories,” and of the conditions under which such theories
admit of Lagangian formulation. We must, in particular, discover what becomes
of the i which enters so conspicuously into the Dirac equation, but can have no
place in a real-field theory. To get a handle on the points at issue we look back
again to (5); i.e., to our toy theory in the Lorentzian case. If we

let ψ =
(
ψ1

ψ2

)
=

(
α1 + iβ1

α2 + iβ2

)
be expanded



α1

β1

α2

β2




then (5) becomes (note the absence of i-factors!)




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


∂0 +




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


∂1 +κ




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0








α1

β1

α2

β2


=




0
0
0
0




which will be abbreviated[
IΓ 0∂0 + IΓ 1∂1 + κ J

]
Ψ = 0 (52.1)

We observe that

IΓµIΓ ν + IΓ νIΓµ = 2gµν I with ‖gµν‖ =
(

1 0
0 −1

)
(52.2)

and—which are more to the point—that

J commutes with IΓ 0 and IΓ 1; moreover J2 = −I (52.3)
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In the complex Dirac theory of the textbooks one achieves (52.3) by setting
J = i I , but that option is not in all cases forced. . . and in real theory not
possible; J is a “square root of minus I ” in an enlarged, matrix-theoretic sense.

If (52.1) is to admit of Lagrangian formulation then there must exist a real
non-singular matrix S such that

SIΓ 0 and SIΓ 1 are antisymmetric, and SJ symmetric (52.4)

in which case we have10

L = − 1
2�c

{
ΨTSIΓµΨ,µ + κΨTSJΨ

}
(52.5)

Exploratory tinkering (I know of no systematic method) shows that a S that
does the job is

S ≡




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 (52.6)

for

SIΓ 0 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 and SIΓ 1 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




are antisymmetric, while

SJ =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




is symmetric.

Look now to the generality of the points at issue. The “Dirac factorization
problem”

(γγγ µ∂µ − κ J)(γγγ µ∂µ + κ J) = ( + κ 2 ) I (53.1)

10 Notice that the symmetric part of SIΓµ, if present, could be discarded as a
gauge term. And that while in quantum theory with complex ψ it is permissible
(and standard) to treat ψ and ψ∗ as though they were formally independent, it
would be senseless to assign “formal independence” to Ψ and ΨT. Only when
these points are understood does it become permissible (if not very useful) to
write

Ψ̃ ≡ ΨTS
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requires, in addition to the familiar conditions γγγ µγγγ ν+ γγγ νγγγ µ = 2gµν I, that

J commutes with all γγγ -matrices; moreover J2 = −I (53.2)

From [J, γγγ µ] = 000 it follows that J commutes with all elements of the Clifford
algebra generated by the γγγ -matrices; i.e., that

J ∈ the “center” of the algebra (53.3)

In standard complex-field Dirac theory the center contains only multiples of I ,
and the introduction of i-factors is forced. But in real-field Dirac theory the
center may/must contain additional elements. The Dirac equation

(γγγ µ∂µ + κ J)Ψ = 0 (53.4)

admits of Lagrangian formulation if and only if there exists an invertible SSS such
that

SSSγγγ µ is antisymmetric (all µ) and SSSJ is symmetric (53.5)

in which case one has

L = − 1
2�c

{
ΨTSSSγγγ µΨ,µ + κΨTSSSJΨ

}
(53.6)

But what we presently lack are constructive means to exhibit matrices J and SSS
with the requisite properties, or even guarantee of their existence. That this is
a major handicap will soon be evident:

In the Lorentzian case the regular representation formulae (47.1) and (47.2)
supply11

IΓ 1 = g1k Ek = +E1 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




IΓ 2 = g2k Ek = −E2 =




0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0




which when combined with IΓ ≡ IΓ 12 ≡ IΓ 1IΓ 2 − g12 I = IΓ 1IΓ 2 entail

G = S I + V1IΓ
1 + V2IΓ

2 + PIΓ

=




S V1 V2 −P
V1 S P −V2

−V2 P S V1

−P V2 V1 S




11 The following remarks are intended to be read on-screen, and will be
rendered confusing by loss of the colored typography which I have used to
avoid confusing hats, primes, etc.
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Notice that IΓ 0 and IΓ 1 differ from the IΓ 0 and IΓ 1 introduced at (52.1). I have
not been able to establish their equivalence in the sense (51), and suspect that
they are not equivalent. Nor have I been able to discover either a J which
commutes with IΓ 0 and IΓ 1 or a S which renders SIΓ 0 and SIΓ 1 antisymmetric
(but neither have I been able to show that such things are impossible). Multiple
failure in this relatively simple case leads me to think that it will be difficult/
impossible to erect a “Lagrangian formulation of real 4-component toy Dirac
theory with general metric” on the platform provided by (49).

But why are we interested in real 4-component theory? Only because the
regular representation of C22(g) has supplied real 4× 4 matrices IΓ 0 and IΓ 1.
In the thought that “general metric theory” should be constructed on some
alternative pattern, we observe that if we introduce

H ≡




0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0


 : hermitian (54.1)

then (49) supplies

HG = SH + i




P −V 2 +V 1 0
−V 2 Pg11 Pg12 −V1

+V 1 Pg21 Pg22 −V2

0 −V1 −V2 Pg




︸ ︷︷ ︸
(54.2)

antihermitian!

The pretty implication is that if we take (47.1) and (47.2) to be definitions of
IΓ0 ≡ E0 and IΓ1 ≡ E1 then

(IΓµ∂
µ − iκ I )(IΓν∂

ν + iκ I ) = ( + κ 2 )I

≡ gµν∂
µ∂ ν with general metric

which motivates us to write

(IΓµ∂
µ + iκ I )ψ = 0 with ψ =



ψ1

ψ2

ψ3

ψ4


 (55)

and to observe that this “toy Dirac equation with general metric” can be
obtained from a Lagrangian of (compare (9.0)) this classic design:

L = −�c
[
i12

{
ψ†

,µHIΓ µψ − ψ†HIΓ µψ,µ

}
+ κ ψ†Hψ

]
(56)

Were one to separate the real from the imaginary components of ψ one would be
led in the toy theory to an 8-component wave function Ψ (and in the physical
case studied by Dirac to a 32-component wave function!).
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Anticipated continuation. In the 4-component theory (55) the IΓ -matrices are
4× 4 and real. When I have an opportunity to resume this discussion I will
attempt to construct a 2 × 2 complex realization of C22(g) . While it was
established by Dirac that C21,3 admits of 4× 4 complex realization, it is not
clear that C24(g) does; if so, then one might possibly expect to have a 3× 3
complex realization C23(g) of, even though the regular realization is 8 × 8.
It is my experience, however, that—in this area especially—numerology is an
unreliable guide.

I propose to explore also the following topics:
• Foldy-Wouthuysen representation in 2-dimensional theory (take maybe

Schweber’s §4f as my point of departure).
• Massless Dirac fields in 2-dimensional theory.
• Abelian/non-Abelian gauge field theories supported by the 2-dimensional

Dirac theory.
• Dirac theory on curved 2-dimensional manifolds gµν(x). The “Vierbein

formalism” becomes a “Zweibein formalism”? Use general covariance to achieve
symmetrization of the stress energy tensor?

• At (54.2) we encounter (set S = V 1 = V 2 = 0 and P = 1) a matrix of
the form 


1 0 0 0
0 g11 g12 0
0 g21 g22 0
0 0 0 g




encountered also in exterior algebra (See electrodynamics (), p. 156). It
would be instructive to develop the connection (which is well known to people
like Lounesto).
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